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Modelling of the toughening mechanisms in 
rubber-modified epoxy polymers 
Part I Finite element analysis studies 

Y. HUANG* ,  A. J. KINLOCH 
Department of Mechanical Engineering, Imperial College of Science, Technology and 
Medicine, Exhibition Road, London SW7 2BX, UK 

The finite element method has been employed to study the micromechanics and 
micromechanisms in rubber-toughened cross-linked-epoxy polymers. A two-dimensional 
plane-strain model has been proposed and has successfully been used to identify the stress 
fields associated with the dispersed rubbery phase and to simulate the initiation and growth of 
localized plastic shear-bands running between the rubbery particles. The effects of the 
microstructure and mechanical properties of the multiphase polymer on the nature and 
magnitude of the stress fields have also been examined. 

1. In troduc t ion  
Single-phase epoxy polymers are usually relatively 
brittle materials and are frequently toughened by the 
incorporation of a rubbery phase [1]. Two important 
toughening mechanisms have been identified for such 
two-phase materials which consist of a rubbery phase 
dispersed in a matrix of a cross-linked polymer, The 
first is localized shear yielding, or shear banding, 
which occurs between rubber particles at an angle of 
approximately 4- 45 ~ to the direction of the maximum 
principal tensile stress [1-3]. Owing to the large num- 
ber of particles involved, the volume of thermoset 
matrix material which can undergo plastic yielding is 
effectively increased compared to the single-phase 
polymer. Consequently, far more irreversible energy 
dissipation is involved and the toughness of the mater- 
ial is improved. The second mechanism is the internal 
cavitation, or interfacial debonding, of the rubbery 
particles which then enables the subsequent growth of 
the voids so-formed by plastic deformation of the 
epoxy matrix [4, 5]. This irreversible hole-growth 
process of the epoxy matrix also dissipates energy and 
so contributes to the enhanced fracture toughness. 

Obviously, when a second phase is introduced into 
an originally homogeneous matrix, it will cause stress 
concentrations around the secondary phase, be it a 
hard particulate inclusion, a rubbery particle, or a 
void. Stress concentrations will become even more 
significant when the volume fraction of the second 
phase is high, because there will be a strong inter- 
action between the stress fields of neighbouring par- 
ticles, or voids. Because plastic deformation will 
initiate from these stress concentrations, it is necessary 
to quantify the nature and magnitude of such stress 
fields in order to elucidate the mechanisms involved. 

The simplest case to consider is a single particle 
embedded in an infinite isotropic matrix subjected to 
uniaxial tension. Goodier's analytical solution L61 
may be applied to this problem. For a particle softer 
than the glassy matrix, the maximum principal stress 
is at the equator of the particle and the maximum 
stress concentration is approximately 1.8. In typical 
rubber-modified polymers, however, the stress fields 
associated with nearby rubbery particles will overlap 
and Goodier's solution is no longer applicable, unless 
the rubbery volume fraction is sufficiently low that 
this effect may be neglected. The effects of this stress 
field overlapping will obviously become more import- 
ant when the particle volume fraction is high. 

To analyse accurately the stress field, it is necessary 
to employ numerical methods such as the finite ele- 
ment method. The first study of rubber-modified poly- 
mers, which used an elastic analysis, was reported by 
Broutman and Panizza [7]. They simplified the two- 
phase material into an assembly of axisymmetric cells. 
Their study revealed that the maximum direct and 
shear stresses were located at t he  equator of the 
particle, indicating that yielding of the matrix would 
initiate from this point. They also found that the stress 
concentration increased in size as the volume fraction 
of rubbery particles was increased. 

Agarwal and Broutman [8] developed a three- 
dimensional model to simulate the packing in a 
rubber-modified material. The results from assuming 
elastic behaviour using such a model were compared 
with the previous results obtained from employing the 
axisymmetric analysis. The two sets of results were 
found to agree well when presented as a function of 
inter-particle spacing. Because a three-dimensional 
analysis was more complicated, and more costly in 
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terms of computer resources, the authors subsequently 
concluded that the axisymmetric model could be used 
without a significant loss in accuracy. 

In a recent study, a spatial statistical technique was 
incorporated into the axisymmetric model by Guild 
and Young [9] to study the influence of particle 
distribution on stress states around rubber particles. 
Their study suggested that particle distribution does 
not significantly change the calculated stress states 
around rubber particles when the rubbery volume 
fraction is below 0.3, which is usually the upper limit 
in rubber-toughened epoxy polymers [1]. 

It should be noted that all of the above-mentioned 
analyses were essentially elastic in nature. As a result, 
none of them could correctly predict the initiation 
and propagation of localized shear yielding (i.e. 
plastic shear bands). To achieve such a goal a truly 
elastic-plastic analysis must be conducted. In one of 
the few analyses where plasticity was taken into ac- 
count, Haward andOwen [10] studied the problem of 
craze formation in glassy polymers. They employed a 
two-dimensional cylindrical void model subjected to 
uniaxial and biaxial loading conditions. Both the 
simple assumption of perfect elastic-plastic behaviour 
and the more complex material behaviour of strain- 
softening followed by strain-hardening were con- 
sidered, and the plastic zone growth around the cavity 
was modelled. The stress to form a craze was found to 
be below the measured tensile yield stress of the glassy 
polymer. They concluded that groups of voids were 
more easily formed than isolated voids, due to inter- 
actions of the stress fields. However, no details of the 
shear-stress fields around these voids were given by 
the authors. 

More recently, Sue and Yee [11] analysed the 
deformation behaviour of a polycarbonate plate with 
a circular hole. They experimentally observed that 
shear bands initially formed at the equator of the hole 
and then gradually shifted around the interface, to- 
wards the poles of the particles, before finally being 
localized into four shear bands which were about 
_+ 45 ~ to the direction of the applied tensile stress, 
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Figure 1 The  ax isymmetr ic  model:  (a) the pack ing  of the  particles; 
(b) the selected cylinder; (c) the bo un da ry  condit ions.  
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initiating from the particle interface at about half-way 
between the equator and poles of the particle. Using 
an elastic-plastic finite element analysis, they demon- 
strated that the maximum octahedral shear stress did 
indeed also shift from the equatorial region of the hole 
towards the polar region. However, from the theoret- 
ical stress contours they obtained, there was no indi- 
cation of any localization of the shear yielding process. 

In the present paper, first an elastic and then an 
elastic-plastic analysis will be conducted using the 
conventional axisymmetric model to predict the 
deformation behaviour of rubber-modified epoxy 
polymers. It will be shown that such models cannot 
correctly predict the localized plastic deformation 
which is observed to occur. A new two-dimensional 
model will then be developed to simulate the plastic 
growth of shear bands. The effects of the micro- 
structure and mechanical properties of the dispersed 
rubbery phase on the stress states will also be dis- 
cussed. All the calculations were conducted using a 
VAX 8600 mainframe computer with the PAFEC 
[12] and the ABAQUS [13] commercial finite element 
packages. PAFEC is simple to use and has excellent 
graphical facilities, while ABAQUS is more powerful 
with respect to the non-linear analyses. 

2. The ax isymmet r ic  model  
2.1. Elastic analysis 
The axisymmetric model simulates the multiphase 
material as a doubly periodically arranged array of 
cylinders, each of the cylinders containing a rubbery 
particle. Owing to periodical symmetry, only half of 
the cylinder is needed for analysis, as shown in Fig. 1. 
Mathematically, only a two-dimensional structure 
needs to be analysed, as illustrated in Fig. lc. The 
boundary conditions were prescribed by: (i) a displace- 
ment being applied on boundary CD, (ii) boundary 
BC being kept parallel to its original shape, while (iii) 
boundaries AB and AD were constrained in the Y and 
X directions, respectively. The average applied stress 
~Yo, was calculated from the reaction forces of the 
nodes on boundary CD. The Young's modulus was 
then calculated as 

E = 0.o/e o (1) 

where % is the applied strain defined by 

So = l n ( l / l o )  (2) 

where l0 and I are the original and the deformed 
lengths of boundary BC, respectively. A typical finite 
element mesh used in the present study is shown in 
Fig. 2. Eight-noded quadrilateral isoparametric ele- 
ments were used for the epoxy matrix, whereas six- 
noded triangular elements were used for the rubbery 
particle. This enabled an automatic mesh to be readily 
generated. 

Distributions of the direct stress, 0.yy, and the equi- 
valent or von Mises stress, 0.vm, are presented in Fig. 
3a and b, respectively. The von Mises stress is defined 
by 

(0" 1 - -  0 .2)  2 -t- ((3" 2 - -  0-3) 2 -}- ((3" 3 - -  0 1 )  2 ~- 2 (y2m 

(3) 



Figure 2 A typical finite element mesh employed for the axisym- 
metric model. 

where era, 13 2 and cr 3 are the three principal stresses. 
The maxima of both the direct and the von Mises 

stresses in the matrix were found to be at the equator 
of the particle, confirming previous reports by other 
authors [7-9]. The maximum stress concentration 
factors for the direct and the von Mises stresses were 
denoted Kyy and Kvm and may be calculated from 

Kyy = ( (~yy)rnax/Oo (4) 

and 

Kvm = (O'vm)max/O'0 (5) 

Table I shows calculated results for a rubber-modi- 
fied epoxy, which was obtained by blending 15 p.h.r. 
rubber and 5p.h.r. piperidine with 100p.h.r. epoxy 
resin and by curing the mixture at 160~ for 6 h  
[4, 14] (p.h.r. stands for "parts per hundred resin"). The 
elastic modulus of the epoxy matrix was measured to 
be 3.2 GPa  [4] and its Poisson's ratio was assumed to 
be 0.35. The elastic modulus for the rubber was taken 
to be 2 MPa [15] and its Poisson's ratio was assumed 
to be 0.49. These values for the mechanical properties 
for the rubbery and the epoxy phases will be used in all 
the calculations throughout this paper, unless other- 
wise stated. 

Now internal cavitation of the rubbery particles or 
debonding of the particles from the matrix leads to 
voids (cavities) being formed [1]. By neglecting any 
plastic void growth at this stage, the void can be 
treated as a particle with zero modulus, and a similar 
analysis to that described above was therefore con- 
ducted to calculate the stress concentration factors 
around the voids and the Young's moduli of the 
voided epoxy polymer. The results are also shown in 
Table I. Obviously, the formation o/" voids due to the 
internal cavitation of the rubbery particles or de- 
bonding of the particles from the matrix does not 
significantly change the level of the stress concentra- 
tions in the epoxy matrix, Further, the stress contours 
are not significantly affected by the cavitation 

Figure 3 (a) Distribution of direct stress, crry, at an applied strain of 
0.001. (b) Distribution of the von Mises stress, crw,, at an applied 
strain of 0.001. (Axisymmetric model; elastic analysis.) 1, 0.00; 2, 0.56; 
3, 1.11; 4, t.66; 5, 2.22; 6, 2.77; 7, 3.33; 8, 3.88; 9, 4.44; 10, 5.00. 

T A B L E  I The mechanical properties of the rubber and epoxy 
phases used for calculating the elastic stress concentration factors 

Phase Volume E e v e E~ vr Krr Kvr. 
fraction (GPa) (MPa) 

Rubber 0.19 3.2 0.35 2.0 0.49 2.43 2.21 
Void 0.19 3.2 0.35 - - 2.43 2.22 

E = Young's modulus; v = Poisson's ratio; e, epoxy; r, rubber; 
vf rubber = 0.19; elastic analysis. 

of rubbery particles, as may be seen by comparing 
Figs 3b and 4. 

2.2. Elastic-plastic analysis 
An elastic-plastic analysis has also been conducted 
using the axisymmetric model. This will represent the 
actual condition near a crack tip more closely, because 
there is always plastic yielding in this region [16]. It is 
also a necessary requirement if the formation of a 
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Figure 4 The distribution of the yon Mises stress, C~vm, around a 
void at an applied strain of 0.001. (Axisymmetric model; elastic 
analysis.) 1, 0.00; 2, 0.56; 3, 1.11; 4, 1.66; 5, 2.22; 6, 2.77; 7, 3.33; 8, 3.88; 
9, 4.44; 10, 5.00. 
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Figure 5 The experimental and the simplified piecewise tensile stress 
versus strain curve for the epoxy matrix. 

metric model cannot simulate the process of localized 
shear yielding in the fracture of the rubber-toughened 
epoxies, which is one of the main toughening mech- 
anisms. 

localized yield zone (i.e. plastic shear band) is to be 
modelled. 

The same mesh was employed as previously used in 
the elastic analysis. A piecewise stress versus strain 
curve was employed to model the constitutive pro- 
perty of the epoxy matrix, as illustrated in Fig. 5. This 
stress versus strain curve was derived from an experi- 
mentally determined stress-strain curve for an un- 
modified epoxy polymer [4], which is also shown in 
Fig. 5. The experimental curve in Fig. 5 was obtained 
by scaling a compressive stress versus strain curve by a 
factor of 0.75, due to the differences in the tensile and 
compressive yield stresses [17]. It should be noted 
that there is stress softening after Yielding, which is 
common for most glassy polymers and is a necessary 
condition for localized shear bands to occur [18]. It 
is followed by a plateau before the material strain 
hardens. 

As predicted from the elastic analysis, the plastic 
zone first initiated around the equator of the void 
when the applied stress reached a critical level, as 
illustrated in Fig. 6a where the parameter shown in 
the contour plot is the equivalent plastic strain. It 
should be noted that no rubber particle is present in 
Fig. 6, because it was experimentally observed that for 
the material being modelled in the present study the 
rubbery particles cavitated when the applied strain 
reached the yield strain of the epoxy matrix [4]. Now 
the results shown in Fig. 6a-d clearly reveal that the 
plastic zone grows steadily in size as the applied 
displacement is increased. Also, when the applied 
strain reached about 0.3, the maximum strain in the 
epoxy reached the experimentally measured fracture 
strain of the matrix epoxy, which was determined to 
be about 0.71 using a plane strain compression test 
[4]. Fracture of the material may be assumed to occur 
at this stage. However, from examining Fig. 6, it is 
obvious that the yield zone does not localize to give a 
clearly defined plastic shear band. Thus, the axisym- 

3. The two-dimensional plane-strain 
model 

3.1. Introduction 
In order to model the localized plastic shear-banding 
process in the deformation of the rubber-modified 
epoxies, a new two-dimensional plane-strain model 
has been developed, which is shown in Fig. 7. The 
particles in this model are arranged in a different 
manner compared to the axisymmetric model which is 
shown in Fig. 1. Due to this change, the basic element 
which can be singled out to represent the multiphase 
material is different from the axisymmetric model, as is 
also illustrated in Fig. 7. The boundary conditions 
were prescribed as follows: 

(U,)A~ - 

Ux)AD - -  

- - ( u , ) c D  

- - U o / 2  ( 6 )  

- - ( U x ) B c  ( 7 )  

where uo is the prescribed displacement. These two 
conditions were required by the periodical symmetry 
of the structure. Obviously, in this model, the stress 
field of one particle mainly interacts with those of the 
four neighbouring particles which lie in the direction 
of _+ 45 ~ to the direction of the applied stress. Also, 
the proposed model may better represent the stress 
state ahead of a crack tip, because it is then a global 
plane-strain fracture which is generally under exam- 
ination. 

3.2. Elastic analysis 
The computing procedures were similar to those de- 
scribed in the last section. The typical mesh employed 
in the analysis is shown in Fig. 8, and Fig. 9 shows the 
contours of the direct stress, r~yy, and the yon Mises 
stress, ~vm" AS was observed for the elastic analysis 
using the axisymmetric model, the maxima for the 
direct and the von Mises stresses still occur at the 
equator, indicating that the growth of the plastic zone 
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Figure 6 Predicted growth of the plastic yield zone at different stages of loading using the axisymmetric model. Applied strain: (a) 0.035; 
(b) 0.075; (c) 0.150; (d) 0.300. (Elastic-plastic analysis.) Equivalent plastic strain: 1, 0.010; 2, 0.087; 3, 0.163; 4, 0.240; 5, 0.316; 6, 0.393; 7, 0.470; 
8, 0.546; 9, 0.623; 10, 0.700. 
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Figure 7 The two-dimensional plane-strain model for the rubber-modified epoxy under tensile loading. 
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Figure 8 A typical finite element mesh employed for the two- 
dimensional plane-strain model. 

will initiate f rom the equator ia l  regions. Table  I I  com- 
pares the results calculated f rom the present  two- 
dimensional  model  and the axisymmetr ic  model.  As 
m a y  be seen, the stress concent ra t ion  factors predicted 
by the new model  are abou t  75% higher than those 
deduced using the axisymmetr ic  model,  a l though the 
only difference between these two models  is the man-  
ner in which rubber  particles are arranged.  However ,  
this difference is not  unexpected because the stress 
concentra t ion  factor is highly dependent  on the inter- 
actions between the stress fields of the neighbouring 
particles. Obviously,  the interactions will be s trongly 
influenced by the a r rangement  of the particles. The  
above  calculat ion suggests that  the a r rangement  in the 
new model  has actually increased such interactions. 
Further ,  f rom Fig. 9b it is clear that  the von Mises 
stress is much  higher in the region a long one of lhe 
diagonal  lines which connects  the centres of the two 
particles. The indication f rom this figure is that  after 
the init iation of a plastic zone in the equatora l  region, 
further plastic deformat ion  will localize along this line, 
which is inclined 45 ~ to the direction of the applied 
stress. This is discussed further in the next section 
when an elast ic-plast ic  analysis is undertaken.  

Again, if the effect of cavi ta t ion is modelled,  then the 
cavi ta t ion of rubber  particles, or  the debonding of the 
particle f rom the epoxy matrix,  does not  cause signifi- 
cant  changes in the stress distr ibutions in the epoxy 
matrix.  F o r  example,  Fig. 10, which shows the dis- 
t r ibut ion of the von Mises stress a round  the cavity, is 
very similar to the stress con tour  in Fig. 9b. This issue 
will be further discussed later when the effects of  the 
mechanical  propert ies  of  rubber  particles on the stress 
distr ibution in the epoxy  matr ix  are investigated. 

3 .3 .  E l a s t i c - p l a s t i c  a n a l y s i s  
The consti tutive relat ionship for the matr ix  mater ia l  
has been shown in Fig. 5 and, as previously noted, 
stress softening and strain hardening of the epoxy 

2 7 5 8  

7 . ,  

,/,/) 
i / /  )27 
e ,  3 

s z 

Figure 9 (a) Distribution of direct stress, cr,., at an applied strain of 
0.002. (b) Distribution of the von Mises stress, ~vm, at an applied 
strain of 0.002. (Two-dimensional plane-strain model; elastic ana- 
lysis.) (a) ~yy (MPa); 1, 0.00; 2, 2.22; 3, 4.44; 4, 6.67; 5, 8.89; 6, 11.1; 
7, 13.3; 8, 15.5; 9, 17.7; 10, 20.0: (b) von Mises stress (MPa): 1, 0.00; 2, 
1.22; 3, 2.44; 4, 3.66; 5, 4,88; 6, 6.11; 7, 7.33; 8, 8.77; 9, 9.77; 10, 1t.0. 

TAB L E I I Comparison of the predicted, maximum elastic stress 
concentrations around the rubbery particles 

Model Kyy Kvm 

Axisymmetric model 2.43 2.21 
Two-dimensional plane strain model 4.36 3.81 

Material properties: epoxy, E = 3.2 GPa, vo = 0.35, rubber 
E = 2.0 MPa, Vr = 0.49, Vf rubber = 0.19; elastic analysis. 

matr ix  has been incorporated,  especially as the 
former  is a necessary condi t ion for shear banding to 
occur  [18]. As shown in Fig. 11a-d, when the applied 
displacement  reached 0.025, a plastic zone starts to 
develop at the equator .  Now,  as the applied displace- 
ment  is further increased, then the location of the 
m a x i m u m  equivalent  plastic strain moves f rom the 
equa tor  towards  the pole (cf. Fig. l l a  and b) and a 
plastic yield zone gradual ly develops along the inter- 
secting line of the two particles. Finally, a band  of 
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Figure 10 Distribution of the von Mises stress, r around a cavity 
at an applied strain of 0.002. (Two-dimensional plane-strain model; 
elastic analysis.) von Mises stress (MPa): 1, 0.00; 2, 1.22; 3, 2.44; 
4, 3.66; 5, 4.88; 6, 6.11; 7, 7.33; 8, 8.77; 9, 9.77; 10, 11.0. 

plastic deformation is formed along the diagonal line 
linking the two voids. Plasticity was highly localized 
in this band even when the applied displacement was 
further increased. When the applied strain reached 
about 0.1, the maximum strain in the band reached the 
fracture strain of the matrix material, which has a 
value of 0.71, as measured from a plane-strain com- 
pression test [4]. Again in these plots, no rubber 
particles are present because they have already cavit- 
ated at the beginning of yielding. Clearly, once the 
band is formed, further yielding is localized inside the 
band until fracture occurs. Thus, the present model 
successfully predicts the formation and growth of 
localized shear bands in the deformation of rubber- 
toughened glassy polymers. 

It should be noted from these contours, and from 
Fig. 7, that the structure under analysis is antisym- 
metric. Mathematically, it is therefore feasible to ana- 
lyse only half of the structure. However, the full 
structure was employed in order to study the growth 
of a complete shear band between two rubber par- 
ticles. 
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Figure 11 Predicted growth of the plastic yield band at different stages of loading using the two-dimensional plane-strain model. Applied 
strain: (a) 0.025; (b) 0.050; (c) 0.075; (d) 0.100. (Elastic-plastic analysis.) Equivalent plastic strain: 1, 0.010; 2, 0.087; 3, 0.163; 4, 0.240; 5, 0.316; 
6, 0.393; 7, 0.470; 8, 0.546; 9, 0.623; 10, 0.700. 
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4. T h e  c r i t i c a l  a p p l i e d  s t r e s s  
Two stress concentration factors, Kyy and Kvm, have 
been defined in Equations 4 and 5. The former refers 
to the concentration of the direct stress and the latter 
to the concentration of the yon Mises stress, compared 
to the average applied stress. The concentration factor 
of the yon Mises stress, Kvm, is worthy of further 
discussion. Because the stress field around the particle 
is triaxiat, the uniaxial yield stress is no longer a 
suitable parameter to use as the yield criterion. In- 
stead, the von Mises yield criterion or the Tresca yield 
criterion should be used [16, 18]. In the present 
analysis, the von Mises criterion was chosen and yield 
was assumed to occur when the von Mises stress, ~vm, 
reached the value of the uniaxial yield stress of the 
matrix material. However, because the stress field 
around the particle was not uniform, microscopically, 
yield will occur when the maximum yon Mises stress 
attains the value of the uniaxial yield stress. The 
average applied stress at this state is termed the critical 
applied stress for the material, cyc, and was defined by 
Broutman and Panizza [7]. It may be related to the 
uniaxial yield stress, %, by the following equation 

one of the most important microstructural parameters 
in determining the fracture properties of rubber- 
toughened epoxies. Fig. 12 compares the experimental 
values of the elastic moduli for a rubber-modified 
epoxy [21] with the numerical predictions using the 
two-dimensional plane-strain model. Obviously, when 
the rubbery volume fraction is within the range 
0.0-0.2, the predictions are in reasonable agreement 
with experimental values. The agreement is parti- 
cularly good considering the fact that the modulus 
and the Poisson's ratio of the rubber used in the 
calculations were only estimates. Beyond a volume 
fraction of about 0.2, there are no experimental data 
available for comparison, because when higher con- 
centrations of rubber are used, phase inversion of the 
multiphase polymer normally occurs I l l .  

With the increase in rubbery volume fraction, the 
concentration of the von Mises stress will increase due 
to the increased interaction between the stress fields of 
nearby rubber particles, as demonstrated in Fig. 13. 
However, predictions from the two-dimensional 
plane-strain model are significantly higher than that 
from the axisymmetric model. As pointed out earlier, 

/ O'y 

O" c = O" 0 (O-vm)max 

- -  (~Y ( 8 )  
Kvm 

The above equation suggests that, due to the incorp- 
oration of rubbery particles, the applied stress at 
which yield occurs is reduced by a factor Kvm. It is this 
factor which will be used in the development of a 
mathematical model to predict quantitatively the 
toughening induced by the rubbery particles in Part II 
of the present work [19]. 

It should be noted that the critical stress as defined 
above is different from the bulk yield stress of the 
multiphase rubber-modified epoxy. When the applied 
stress is at the critical stress, yielding occurs near the 
equators of the rubbery particles or voids. However, 
the multiphase rubber-toughened epoxy may behave 
macroscopically in a linear elastic manner. In other 
words, the critical stress is the effective yield stress 
which characterizes the formation of a plastic zone in 
multiphase polymers. The calculation of the size of 
plastic zone by the Irwin model should then be modi- 
fied for the multiphase materials as 

ry = (KI/Cyc)2/6~ (9) 

Recently, Mauzac and Schirrer [20] have also pro- 
posed a similar modification to the Irwin model in 
their study of crack-tip damage zones in rubber- 
toughened polymers. They proposed a "damage initia- 
tion threshold stress", c~th, which is essentially the same 
as the critical applied stress defined in Equation 8. 

5. M i c r o s t r u c t u r a l  a n d  m e c h a n i c a l  
p r o p e r t y  e f f e c t s  

5.1. Effects of dispersed rubbery phase 
vo lume fraction 

The rubbery volume fraction has been shown [1] to be 
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Figure ]2 Comparison between the calculated Young's modulus of 
the multiphase polymer and the experimental values. (Two-dimen- 
sional plane-strain model; elastic analysis.) (m numerical; + experi- 
ment) 
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Figure 13 Calculated yon Mises stress concentration factor, Kvm, 
as a function of volume fraction of the dispersed rubbery phase. 
(m Two-dimensional plane-strain model; z5 axisymmetric model; 
both elastic analysis.) 
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the arrangement of the particles in the former model 
maximizes the interaction between their stress fields 
and results in the higher stress concentration factor. 
Further, it should be noted that when the axisym- 
metric model is employed, the maximum yon Mises 
stress increases relatively slowly with volume fraction 
over the range of volume fractions up to about 0.3. 
The two-dimensional plane-strain model, on the other 
hand, predicts a steady rise in the yon Mises stress 
concentration with rubbery volume fraction, and an 
approximate linear relationship exists. Thus, the two- 
dimensional plane-strain model predicts that the ex- 
tent of shear yielding will be enhanced steadily by an 
increase in the rubbery volume fraction. For rubber- 
toughened thermosetting polymers this prediction is 
in better agreement with many experimental observa- 
tions which have shown that the fracture toughness of 
rubber-modified epoxy polymers does indeed increase 
steadily with an increase in the rubbery volume frac- 
tion [1]. The differences between the two models most 
probably arise from the different arrangements of 
particles and degrees of constraint which are assumed. 

In addition to the rubbery volume fraction, the 
mechanical properties of the epoxy matrix and rub- 
bery particles may also have a strong influence on the 
stress fields in and around the rubbery particles. These 
are considered in the following section. 

5.2. Effect of r ubbe r  m o d u l u s  
Fig. 14 shows predictions from the two-dimensional 
plane-strain model for the Young's modulus (Fig. 14a) 
of the multipbase rubber-toughened epoxy and the 
maximum yon Mises stress concentration factor 
(Fig. 14b) as a function oflog(Ee/Er), where Ee and E r 
are the Young's moduli of the epoxy and rubber, 
respectively. A rubbery volume fraction of 19% has 
been assumed. In the calculation, the Poisson's ratios 
of the epoxy and rubber were assumed to be 0.35 and 
0.49, respectively, and the Young's modulus of the 
epoxy matrix was kept constant at a value of 3.2 GPa. 
Initially, the Young's modulus of the two-phase 
material decreases sharply with an increase in the 
value of log(Ee/Er). When the value of log(Ee/Er) 
reaches a value of about 3.0, it approaches a constant 
lower-bound value of about 1.82 GPa. 

The von Mises stress concentration factor, on the 
other hand, increases steeply until log(Ee/E,) reaches a 
value above 3.0, when a constant value of about 3.8 is 
attained. It should be noted that when E~ equals E~, 
the von Mises stress concentration factor is slightly 
higher than unity, due to the differences in the 
Poisson's ratios of the two phases. The Young's 
moduli for the epoxy and the rubber are typically 
about 3.0 GPa  and 2.0 MPa, respectively, which cor- 
responds to a log(E~/E,) ratio of 3.18. Thus, with the 
above assumptions, the stress field around such a 
rubbery particle is not significantly different from 
that around a void, which corresponds to a log(E~/E,) 
ratio --* oo. As a result, it can be concluded that the 
internal cavitation, or debonding of the rubber par- 
ticles, does not cause any significant differences in the 
stress fields around the rubbery particles. It merely 
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Figure 14 Calculated relationships between: (a) Young's modulus, 
& of the rubber-toughened epoxy and ~lae ratio of the moduli of the 
two phases; (b) von Mises stress concentration factor, Kv, ., and the 
ratio of the moduli of the two phases. (Two-dimensional plane- 
strain model; elastic analysis.) 

creates a void which may then grow further as a result 
of plastic deformation of the epoxy matrix [4, 5]. 

From the above results, it may also be concluded 
that the interracial bonding between the dispersed 
rubbery particle and epoxy matrix is not important. 
This is in agreement with recent experimental obser- 
vations by the authors [4]. It also agrees with a recent 
analysis by Liu and Nauman [22], who extended 
Goodier's solution to analyse the stress state inside a 
single inclusion in an infinite plate. However, the 
present analysis also has taken the interaction 
between particles (voids) into consideration and is 
therefore more applicable to rubber-modified thermo- 
setting polymers. 

5.3. Effect of Poisson's ratio of the rubbery 
particles 

Fig. 15 shows the predictions from the two-dimen- 
sional plane-strain model for the maximum Mises 
stress concentration, Kvm, as a function of the 
Poisson's ratio, v r, of the rubbery phase. A volume 
fraction of dispersed rubbery phase of 0.19 has been 
assumed and the value of the ratio of log(E~/Er) has 
been taken to be 3.18. The value of Kvm is not signifi- 
cantly dependent upon the value of Vr, until the value of 
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Figure 15 Calculated relationship between the von Mises stress 
concentration factor, Kvm, and the Poisson's ratio, Vr, of the dis- 
persed rubbery phase. (Two-dimensional plane-strain model; elastic 
analysis.) 

v r ,rises above about 0.49; when vr = 0.499 the value of 
Kvm is 3.48 and when vr = 0.4999 the value of Kvm is 
2.86. Hence, to return to the question of the stress 
concentration associated with a void, a void may then 
actually generate a somewhat higher local stress con- 
centration if the Poisson's ratio of the rubbery particle 
is significantly above about 0.49. 

6. Conc lus ions  
A two-dimensional plane-strain model has been 
developed to analyse the stress fields around the dis- 
persed rubbery particles in multiphase rubber-modi- 
fied epoxy polymers. The epoxy matrix has been 
modelled as either an elastic or elastic-plastic mater- 
ial. The investigation has revealed that the conven- 
tional axisymmetric model underestimates the effects 
of rubbery inclusions in creating stress concentrations 
inside the glassy polymeric matrix. Furthermore, the 
present model has been successfully applied to simu- 
late the initiation and growth of the localized shear 
bands that have been observed to develop between 
rubbery particles or voids. 

In Part II [19] of the paper the results given in the 
present paper will be extended to model quantitatively 

the plastic shear band and plastic void-growth mech- 
anisms. This will enable a detailed, predictive model to 
be developed for the toughening mechanisms induced 
by the presence of a dispersed rubbery phase in a 
thermosetting polymeric matrix. 
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